
Charles F. Musil*, Greg E. Bodeker**, Malcolm W.J. Scourfield† and Leslie W. Powrie‡

Geographical and temporal trends in clear-sky, biologically active ultraviolet-B (UV-B, 280–315 nm) radiation were modelled from 23-yr satellite ozone records across latitudes 22°S to 35°S and longitudes 16°E to 34°E in southern Africa. Modelled values were calibrated against broadband and spectral instrument-based measurements and mapped at 2.6-km² resolution in accordance with the internationally accepted UV-index scale. Statistically significant latitudinal, longitudinal and intra-annual UV-index gradients were evident, the latitudinal gradients especially displaying large seasonal anomalies ranging from a 4.5% increase in UV-index per degree reduction in latitude during winter to a 0.5% increase in summer. Inter-annual UV-index gradients seemingly corresponded with the 11-yr cycle of extraterrestrial solar activity in which peak UV-indices (up to 13% deviation from 23-yr averages) appeared associated with years of least solar activity, though there were exceptions. These UV-index peaks were most prominent between midwinter and early spring in July, August and September. They also displayed geographical anomalies, the largest deviations in UV-indices mostly apparent at high latitudes and low longitudes. Inter-annual UV-index gradients mostly exceed UV-index increases induced by anthropogenic emissions of ozone-depleting trace gases over the 23-yr assessment period. The latter increases, though relatively modest (up to 9% between 1979 and 2001), have caused substantial geographical alteration in the distribution of indices across South Africa, with midday clear-sky UV-indices of magnitude 13 and greater corresponding to 72% of the country's interior in December 2001 compared with only 2% under comparable levels of solar activity in December 1979. Such geographical shifts are expected to intensity with continuing ozone depletion, especially at the next solar cycle minimum anticipated in 2007/08.

Introduction

The decline in stratospheric ozone at both high and mid-latitudes in the northern and southern hemispheres due to anthropogenic emissions of ozone-depleting trace gases has raised concerns about the detrimental effects that increased amounts of biologically active ultraviolet-B (UV-B: 280–315 nm) radiation reaching the Earth’s surface may have on human health and other biological systems. Such increases in ambient sunlight have recently been reported at various sites across the world, but it is unclear how these will be distributed globally in the future. In southern Africa, definitive measurements of solar ultravio-

*Research and Scientific Services, National Botanical Institute, Private Bag X7, Claremont 7735, South Africa.
†School of Pure and Applied Physics, University Natal, Durban 4041, South Africa.
‡Author for correspondence. E-mail: musil@nbict.nbi.ac.za

Methods

Modelled UV-indices

Daily estimates of clear-sky solar UV-B irradiance at solar noon (midday) covering the period 1 January 1979 to 31 December 2001 were obtained at a resolution of ~2.6 km² across latitudes 22°S to 35°S and longitudes 16°15'E to 33°45'E, using a modified computer-based empirical model integrated with Geographic Information Systems (GIS). The modelled UV-B irradiances at

Radiative transfer models that integrate transmission, reflection and atmospheric absorption present a viable alternative to ground- and satellite-based UV-irradiance measurements, and these have been applied extensively to estimate past variability in biologically active UV-B irradiance from satellite ozone records and predict future UV-B irradiance from cyclic signals underlying the variability in the total column ozone. In southern Africa, estimates of past and future variation in erythemal UV-B irradiance have been confined to the five cities of Cape Town, Port Elizabeth, Bloemfontein, Durban and Johannesburg. Notably lacking are modelled estimates of erythemal UV-B irradiance for the entire southern Africa region, their validation against instrument-based measurements and their expression in a form simply understood by both scientists and the general public. In this regard, the UV-index scale was accepted by the international scientific community at the World Health Organization/World Meteorological Organization (WHO/WMO) meetings held in Les Diablerets during 1995 and 1997 as the fundamental parameter for familiarizing the public with the detrimental effects of UV on human health, particularly in relation to skin damage, sunburn times and proper use of sunscreens. Both the WMO, WHO and United Nations Environment Programme promote harmonized use of the UV-index scale globally. They advise governments to employ this as an educational tool in their health promotion programmes, and encourage dissemination channels such as the media and tourism industry to publish UV-index forecasts and promote sun-warning messages.

In view of the above, and the need to convey guidelines on permissible sun exposure times to the southern African public, we modelled and mapped surface UV-B irradiances across southern Africa consistent with the UV-index scale, calibrated these against instrument-based measurements to provide realistic indices, and analysed geographical and temporal trends over a 23-year assessment period.
1-nm step size in the 280–315 nm UV-B range were weighted by the International Commission for Illumination (CIE) reference erythemal action spectrum,9 integrated over wavelength, and converted to UV-indices (erythemal-weighted UV-B irradiance in W m\(^{-2}\) × 40). Digitized data inputs into the empirical model included geographical coordinates for each 1.6 × 1.6-km grid element, dates, South African Standard Times (SAST) compliant with solar noon, altitude above sea level (median value in each group of 64 × 200 m\(^2\) grids due to the general bias of the median towards the mean in asymmetric records), relative humidity near to midday (long-term average at 14:00 SAST) interpolated from meteorological records, as well as total column ozone concentration in Dobson units (DU). Ozone concentrations, extracted from 1° latitude by 1° 15' longitude grid data using bilinear (weighted average of four surrounding grid points) interpolation (applying piecewise polynomials), were obtained from the NASA Total Ozone Mapping Spectrometer (TOMS) instrument flown on board the Nimbus 7,10 Meteor 3,11 Earth Probe12 and Adeos13 satellites, and the Global Ozone Monitoring Experiment (GOME) flown on the ERS-2 satellite.14 Owing to the different satellite orbits, sampling close to local midday was every 24 h for TOMS and every 72 h for GOME. A rural environment and a ground cover corresponding to green farmland were presumed in all model computations. The paucity of suitable records of cloud abundance and form in the meteorological archives as well as the high spatial heterogeneity and short-term temporal variability in these factors precluded their inclusion in the model. The same rationale applied to atmospheric aerosol concentrations, and a default value representing typical atmospheric aerosol levels in a rural environment (aerosol scattering coefficient = visual range > 3.192 km) was applied. The impact of the incompletely accounted for temporal and spatial variations in atmospheric aerosols, as well as relative humidity, on model sensitivity was relatively minor (approximate 1% and 0.2% alterations in erythemal-weighted UV-B irradiance per 10% change in visual range and relative humidity, respectively), and resolved partly by calibrating the modelled UV-irradiances against simultaneous instrument-based measurements over an extended period in an industrialized coastal city under humid conditions.

Instrument-measured UV-indices

Daily UV-irradiance measurements were obtained concurrently with broadband and spectral instrumentation located in an observation tower, which allowed full view of the horizon, situated on top of the School of Pure and Applied Physics building at the University of Natal in Durban (29°58'S; 30°57'E). Measurements taken with the broadband instrument covered a 2617-day period from 1 March 1993 to 30 April 2000. Those taken with the spectral instrument covered a much shorter 1277-day period from 1 November 1996 to 30 April 2000, and assisted in correcting the broadband measurements for ozone dependency, a consequence of slight wavelength mismatches between broadband meter spectral responses and biological action spectra.15

The broadband instrument comprised an internally temperature-stabilized pyranometer (YESS model UV-B1, Yankee Environmental Systems, Inc., Turners Falls, MA) operated in accordance with the manufacturer’s standards,16 which was checked against an unused reference YES pyranometer at approximately six-month intervals. The instrument’s analogue voltage output was interfaced with a data logger, which digitized and averaged readings recorded every 15 s over 5-min intervals. The effective standard time of each averaged analogue voltage reading was assigned at the centre of the 5-min recording interval. Averaged analogue voltage readings were downloaded daily into a personal computer programmed to compute corresponding solar zenith angles (SZA), convert voltage readings into biologically weighted irradiances, compliant with the CIE reference erythemal action spectrum,9 and convert these to UV-indices.

The spectral instrument comprised a double monochromator spectroradiometer (Bentham model DM 150, Bentham Instruments Ltd, Reading, Berkshire) interfaced with a personal computer. The instrument’s stepper-motor-driven gratings covered the spectral range 290–500 nm with a bandwidth of 1 nm and a scanning duration of 180 s. The light sensor was a fibre-optic cable topped by a Teflon diffuser connected to a temperature-stabilized photomultiplier detector sealed in an insulated container. Instrument calibration was performed monthly. Absolute response was checked against an incandescent lamp (Bentham CL2, Bentham Instruments) mounted inside a baffled cylinder to exclude ambient and reflected lamplight. Wavelength alignment was checked against vapour emission lines from a mercury arc lamp. The spectroradiometer was programmed to commence measurements at dawn and perform scans at intervals of 5-degree SZA throughout the day. Standard times were assigned to the centre effective wavelength of the integrated spectra. Absolute spectral irradiance measurements were biologically weighted with the CIE reference erythemal action spectrum9, integrated over the 280–315 nm wavelength range and converted to UV-indices.

Calibration of modelled against measured UV-indices

UV-index measurements (2246 with the YES and 1125 with the Bentham instruments), excluding those ignored (371 YES and 152 Bentham) as a result of instrument performance and calibration checks, taken in close proximity to midday were matched for date, time and SZA with those computed by the empirical model. The criteria applied in this matching process were that the effective standard times and corresponding SZA values assigned to the modelled UV-indices, and those measured with the YES and Bentham instruments deviated by no more than 60 s in duration and 0.25° in SZA. The matched UV-indices (1482 YES and 955 Bentham) were then date coordinated with digitized measurements of daily sunshine duration obtained from a Campbell-Stokes type recorder operated by the South African Weather Service at a proximate (7 km distant) meteorological station at Durban International Airport. Of these, 286 YES and 192 Bentham measured UV-indices corresponded to days with sunshine periods exceeded 90% of total day length (effectively clear-sky conditions).

Data synthesis and statistical analysis

Least-squares regressions of the empirical-modelled UV-indices against the broadband and spectral instrument-measured UV-indices provided mathematical functions for calibration of the modelled UV-indices, that is, their adjustment to conform to the realistic instrument-measured values. A Student’s t-test assessed the regression slopes for statistical significance.

Following their adjustment, the modelled UV-indices were mapped, and reduced to a resolution of ~2340 km\(^2\) by averaging these across 0.5° latitude × 0.5° longitude grid elements. This process simplified statistical analyses, yet maintained adequate precision for testing temporal differences in UV-indices along spatial gradients. A generalized linear model analysis of variance (S-Plus 4.5 Professional Release 2, Lucent Technologies) tested the responses of the modelled
UV-indices to the fixed effects of year, latitude, longitude and their combinations. Tests were conducted on both the monthly and annually averaged UV-indices. A Duncan’s multiple range test separated UV-indices that differed significantly \((P \geq 0.05) \) in magnitude inter-annually. These UV-indices were expressed as percentage deviations from the 23-yr average to compensate for natural cyclic oscillations in surface UV-B irradiance. The following formula was applied:

\[
\text{UV index deviation (\%) = } \frac{(\text{Mean 23 yr UV index} - \text{UV index})}{\text{Mean 23 yr UV index}} \times 100
\]

The overall increases in monthly and annually averaged UV-indices over the 23-yr assessment period were quantified using least-squares regressions, and these were tested for significance with a classical analysis of variance.

Results and discussion

Numerous studies have confirmed theoretical relationships under cloud-free and low-aerosol sky conditions between ozone reduction and UV-B increases, and under known total column ozone modelled UV-B irradiances have also been reported to fall within the experimental errors of both broadband meters and spectroradiometers. Our empirical-modelled UV-indices were significantly \((P \leq 0.001) \) correlated both over discrete and wide solar zenith angles with the broadband and spectral instrument-measured values but were of consistently smaller magnitude (Fig. 1A). Their adjustment to conform to realistic instrument values was executed by quantifying their relationship with the combined broadband and spectral instrument-measured UV-indices \((y = 1.5693x - 0.0966; r^2 = 0.937; t_{1,477} = 84.4, P \leq 0.001) \). Correction of the broadband instrument measurements for ozone dependency reduced error margins by only a small fraction \((2.40 \pm 0.44\%) \). It was noteworthy that the adjusted UV-indices compared auspiciously with instrument-measured values reported by independent observers for other locations in southern Africa. For example, our adjusted indices modelled for clear skies at Windhoek (22°34’S; 17°06’E, 1725 m) at midday between December 1999 and January 2000 were in the range 15.5 to 15.9, which were equivalent to indices in the range 15 to 16 measured at this location over the same period.

Analysis of our modelled UV-indices confirmed the existence of significant \((P \leq 0.05) \) spatial gradients across southern Africa (Table 1). The main geographical trends were significantly \((P \leq 0.05) \) increased indices (Table 1) with decreasing latitude (Fig. 1B), decreasing longitude (Fig. 1C) and increasing altitude above sea level (Fig. 2A). Latitudinal UV-index gradients displayed large seasonal anomalies, ranging from a 4.5% increase in UV-index per degree reduction in latitude during June to a 0.5% increase in December. Longitudinal UV-index gradients were relatively smaller in magnitude and displayed little seasonal variation, ranging from a 0.7% increase in UV-index per degree reduction in longitude during June to an 0.8% increase in December. Vertical UV-index gradients were in the order of a 6.2% increase in UV-index per 1000 m elevation above sea level.

Modelled spatial gradients in surface UV-B irradiance have
been corroborated by instrument-based measurements. For example, the Robertson-Berger meter network in the United States has confirmed higher erythemal-damaging UV-B irradi-ances at lower latitudes, and other R-B-type meter measurements in Russia, Switzerland, Malaysia and New Zealand have also substantiated such broad latitudinal differences in erythemal UV-B irradiance. Also, spectral measurements have shown higher summertime values of UV-A and UV-B radiation in the southern hemisphere, for instance at Lauder (New Zealand) and Melbourne (Australia), than at comparable latitudes in the northern hemisphere, such as at Nuremberg (Germany). These disparities between southern and northern hemispheres have been attributed to the yearly cycle of the Sun–Earth distance, lower stratospheric ozone levels in the southern African Journal of Science 99, September/October 2003

| Table 1. F-ratios (F_1,19726) from generalized linear model analyses of variance and least-squares regressions of monthly and annually averaged UV-indices over a 23-yr assessment period. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Month | Year: 1979–2001 | Latitude: 22–35°S | Longitude: 16–34°E | Year x Latitude | Year x Longitude | Year x Latitude x Longitude | Year x Latitude x Longitude |
| | | | | | | | |
| Jan | 3386.0*** | 11899.0*** | 13661.6*** | 14.3*** | 9.7*** | 13.3*** | 1437.2*** |
| Feb | 2312.3*** | 58119.2*** | 9569.2*** | 48.9*** | 21.3*** | 32.2*** | 503.6*** |
| Mar | 4.2* | 178515.7*** | 11169.8*** | 33.4*** | 3.2 | 104.8*** | 0.4 |
| Apr | 18.4*** | 238383.6*** | 7381.5*** | 25.9*** | 2.0 | 159.5*** | 1.3 |
| May | 17.5*** | 316589.9*** | 5616.9*** | 16.2*** | 0.8 | 221.9*** | 0.9 |
| Jun | 1478.0*** | 618678.6*** | 7403.0*** | 96.9*** | 0.1 | 385.7*** | 43.2*** |
| Jul | 2601.7*** | 371482.7*** | 4601.6*** | 79.4*** | 0.6 | 209.4*** | 129.6*** |
| Aug | 4508.2*** | 216319.7*** | 5311.4*** | 62.6*** | 4.0* | 150.0*** | 368.2*** |
| Sep | 5802.3*** | 162109.0*** | 12206.4*** | 18.8*** | 19.9*** | 165.8*** | 589.4*** |
| Oct | 2887.8*** | 50457.1*** | 12876.8*** | <0.1 | <0.1 | 65.3*** | 685.5*** |
| Nov | 2375.8*** | 19674.8*** | 21149.8*** | 1.11 | 3.2 | 30.8*** | 773.7*** |
| Dec | 2885.0*** | 3901.7*** | 14152.7*** | 0.3 | 0.6 | 7.5** | 1474.4*** |
| Annual | 4801.6*** | 213690.0*** | 23941.6*** | 20.1*** | 1.9 | 170.4*** | 353.1*** |

Significant effects at * P ≤ 0.05, ** P ≤ 0.01 and *** P ≤ 0.001 are presented in bold type.
Research Letters

South African Journal of Science, September/October 2003

Table 2. Annually averaged extraterrestrial solar flux, and monthly and annually averaged UV-index deviations from 23-year averages.

<table>
<thead>
<tr>
<th>Year</th>
<th>Solar flux at 2000 MHz</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>191.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1980</td>
<td>198.4</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1981</td>
<td>202.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1982</td>
<td>197.8</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1983</td>
<td>199.9</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1984</td>
<td>202.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1985</td>
<td>199.9</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1986</td>
<td>202.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1987</td>
<td>199.9</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1988</td>
<td>202.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1989</td>
<td>199.9</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1990</td>
<td>202.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1991</td>
<td>199.9</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1992</td>
<td>202.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1993</td>
<td>199.9</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1994</td>
<td>202.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1995</td>
<td>199.9</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1996</td>
<td>202.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1997</td>
<td>199.9</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1998</td>
<td>202.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>1999</td>
<td>199.9</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>2000</td>
<td>202.6</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
<tr>
<td>2001</td>
<td>199.9</td>
<td>0.51</td>
<td>0.51</td>
<td>0.74</td>
<td>0.51</td>
<td>0.83</td>
<td>0.90</td>
<td>0.52</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.75</td>
<td>0.83</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Values within each column followed by the same letter are not significantly different from each other at P ≤ 0.05, with those exceeding 4% presented in bold type.

southern hemisphere, and higher tropospheric pollutants (ozone and aerosols) in Germany. As regards vertical UV-index gradients, measurements at remote locations in Chile have confirmed increases in biologically effective UV-B irradiance of 4–10% per 1000 m elevation above sea level near Santiago, Chile,32 and between 9 and 23% in the Swiss Alps,33 these presumably being due to more tropospheric ozone and atmospheric aerosols at lower elevations at these locations.

Analyses also revealed significant (P ≤ 0.05) temporal gradients. Intra-annual UV-index gradients (up to 300% UV-index increase) between winter and summer (Fig. 1D) exceeded by several orders of magnitude inter-annual gradients (Table 2). The latter seemingly corresponded with the 11-yr cycle of extraterrestrial solar activity in which peak UV-indices (largest deviations from 23-yr averages) were mostly associated with periods of least solar activity, for instance years 1985 and 1997, though there were exceptions, such as years 1990 and 1999 (Table 2). These UV-index peaks were most prominent between mid-winter and early spring in July, August and September and also displayed significant (P ≤ 0.05) geographical anomalies (temporal versus spatial interactions), though not in all months of the year (Table 1). These anomalies were reflected in inconsistent geographical patterns of UV-index change with the largest deviations in the index most apparent at high latitudes and low longitudes.

Previous analyses of various cyclical signals underlying the variability in total column ozone above five South African cities predicted clear-sky summer erythemal UV-B levels 2.5% to 7.5% higher at midday in the years 1998, 2000 and 2007, this being attributed to the influence of the quasi-biennial oscillation and solar cycle.7 These predicted future increases in UV-B irradiance were corroborated by our subsequent observations, which indicated enhanced summertime UV-indices in the periods...
decrease in erythemal damaging UV-radiation measured by active UV-B irradiance have produced conflicting results. A 12% long-term instrument-based measurements of biologically solar cycle minimum anticipated in 2007/08.

apparent in coastal areas (Fig. 2A, D) and these are expected to try’s interior in 2001 (Fig. 2D). Such extensive changes are also apparent in 1979 (Fig. 2A), included as much as 72% of the coun-

sons reveal that midday, clear-sky UV-indices of magnitude 13 comparable levels of solar activity in 2001. Indeed, the compari-

conditions of maximum solar activity in 1979 with those under inner conditions of maximum solar activity. For example, during December 1985 and 1997, when solar activity was near its minimum, over 95% of the land area within the borders of South Africa corresponded to a UV-index of 13 and greater under clear skies at midday (Fig. 2B, C) compared to only 2% of the land area in December 1979, when solar activity was close to its maximum (Fig. 2A).

Observed changes in the UV-index associated with the 11-yr solar cycle (Table 2) mostly exceeded long-term upward trends in biologically active UV-B radiation induced by anthropogenic emissions of ozone-depleting trace gases. These upward trends, which were previously inferred from monthly and zonally averaged satellite ozone records between January 1979 and December 1993, indicated annual increases in erythemal active UV-B irradiance over this period ranging from 5.4 ± 1.5% at 25°S to 8.0 ± 1.5% at 35°S. From 1993 onwards, these enhancements in biologically active UV-B irradiance appear to have declined somewhat, since our least-squares regressions revealed an annually averaged increase (P ≤ 0.001) in UV-B irradiance between January 1979 and December 2001 of only 4.3% (Table 2), though increases as high as 9.0% were apparent in late winter (August). These UV-index increases, though relatively modest, have already caused substantial geographical alteration in the distribution of UV-indices across South Africa, this being apparent from comparisons of their mapped distributions under conditions of maximum solar activity in 1979 with those under comparable levels of solar activity in 2001. Indeed, the compar-

ions reveal that midday, clear-sky UV-indices of magnitude 13 and greater, which corresponded to only 2% of South Africa’s interior in 1979 (Fig. 2A), included as much as 72% of the country’s interior in 2001 (Fig. 2D). Such extensive changes are also apparent in coastal areas (Fig. 2A, D) and these are expected to intensify with continuing ozone depletion, especially at the next solar cycle minimum anticipated in 2007/08.

In contrast to UV trends estimated from satellite ozone data, long-term instrument-based measurements of biologically active UV-B irradiance have produced conflicting results. A 12% decrease in erythemal damaging UV-radiation measured by R-B-type meters was reported in Moscow between 1968 and 1983, though this was accompanied by a 13% increase in cloudiness and 15% rise in atmospheric turbidity.29 Similarly, R-B-type meter measurements taken between 1974 and 1985 at eight different sites in the United States showed decreases in erythemal damaging UV-radiation ranging from 0.5% to 1.1% per year.26 In contrast, R-B-type meter data obtained at a station in the Swiss Alps (3600 m above sea level at 47°N) indicated enhanced erythemal active UV-radiation of 0.7 ± 0.2% per year between 1981 and 1989, persisting at 0.7 ± 0.3% per year between 1981 and 1991.28 Likewise, multi-filter measurements taken between 1975 and 1990 at a single site in Maryland, U.S.A., indicated that the maximum monthly mean UV-B irradiance was 13% higher in the period 1983–89 than for the entire data record, though the overall increase of 35% in monthly mean UV-B irradiance recorded from 1977/78 to 1985 was much larger than expected from CFC-induced ozone depletion.36 These measurements indicate that ozone-induced changes can be detected over a period of several years despite variability due to cloudiness and local pollution. However, linking these entirely to anthropogenic emissions of ozone-depleting trace gases over such relatively short time spans is questionable, especially as many of the above reports of UV-B irradiance increases were ostensibly associated with corresponding decreases in solar activity.

It is expected that, with continued full compliance with the Montreal Protocol and all its amendments, global ozone deple-

ions should peak early in this century with a slow recovery over the next 50 years.1 Predicted future increases in erythemal active UV-B radiation, based on total column ozone trends between 1979 and 1993, were 15–25% for southern hemisphere mid-latitudes in all seasons.3 Our approximations, extrapolated from ozone trends between 1979 and 2001, predict future increases in erythemal UV-B irradiance across southern Africa ranging from only 1.9% in early autumn (March) to as much as 24.5% in late winter (August), with an annual average of 11.7%. Such increases, however, should not be treated with complacency, since midday UV-indices during summertime periods of peak recreational sun exposure are already ranked very high to acute

Table 3. UV-indices, rankings and exposure times based on minimal erythemal doses (MED) for perceptible skin damage in persons of different skin type.

<table>
<thead>
<tr>
<th>UV-index</th>
<th>Ranking</th>
<th>Minutes to skin damage for different skin types</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Fair skin, freckles</td>
<td>Blonde hair</td>
</tr>
<tr>
<td>II</td>
<td>Fair skin,</td>
<td>Blond, red hair</td>
</tr>
<tr>
<td>III</td>
<td>Fair skin,</td>
<td>Light brown hair</td>
</tr>
<tr>
<td>IV</td>
<td>Light brown skin</td>
<td>Brown, black hair</td>
</tr>
<tr>
<td>V</td>
<td>Dark brown skin</td>
<td>Brown, black hair</td>
</tr>
<tr>
<td>VI</td>
<td>Black skin</td>
<td>Brown, black hair</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UV-index</th>
<th>Ranking</th>
<th>Minutes to skin damage for different skin types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimal</td>
<td>104.0</td>
</tr>
<tr>
<td>2</td>
<td>Minimal</td>
<td>52.0</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>34.7</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>26.0</td>
</tr>
<tr>
<td>5</td>
<td>Moderate</td>
<td>20.8</td>
</tr>
<tr>
<td>6</td>
<td>Moderate</td>
<td>17.3</td>
</tr>
<tr>
<td>7</td>
<td>Moderate</td>
<td>14.9</td>
</tr>
<tr>
<td>8</td>
<td>High</td>
<td>13.0</td>
</tr>
<tr>
<td>9</td>
<td>High</td>
<td>11.6</td>
</tr>
<tr>
<td>10</td>
<td>Very high</td>
<td>10.4</td>
</tr>
<tr>
<td>11</td>
<td>Very high</td>
<td>9.5</td>
</tr>
<tr>
<td>12</td>
<td>Very high</td>
<td>8.7</td>
</tr>
<tr>
<td>13</td>
<td>Acute</td>
<td>8.0</td>
</tr>
<tr>
<td>14</td>
<td>Acute</td>
<td>7.4</td>
</tr>
<tr>
<td>15</td>
<td>Extreme</td>
<td>6.9</td>
</tr>
<tr>
<td>16</td>
<td>Extreme</td>
<td>6.5</td>
</tr>
<tr>
<td>MED (J cm(^{-2}))</td>
<td>156</td>
<td>210</td>
</tr>
</tbody>
</table>
across southern African coastal regions and interior (Fig. 2D). Exposure periods causing perceptible skin damage corresponding to UV-indices of this magnitude range from ~9 min and less in sensitive, fair-skinned persons to ~34 min and less in resilient, dark-skinned subjects (Table 3). These relatively short exposure times point to the importance of scheduling recreational and sporting activities to early or late in the day to limit UV-induced damage to the skin, eyes and immune system.

In conclusion, our observations indicate that increases in the UV-index induced by anthropogenic emissions of ozone-depleting trace gases over southern Africa during the last 23 years have been relatively modest and generally of smaller magnitude than those induced by natural, 11-year oscillations in solar activity. Despite the expected peaking of global ozone depletions early this century, substantially intensified and geographically altered UV-indices may still be expected to occur intermittently in the future where the detrimental effects of residual anthropogenic trace gas emissions on the ozone layer coincide with seasonal ozone troughs and diminished solar activity.

Received 15 April. Accepted 1 October 2003.