A Tale of Two Districts:
Regional influences on the implementation of Community-Based Climate Change Adaptation

Clockwise: A project beneficiary from the Ga-Ntata Village showcasing how he uses harvested rainwater to maintain crops in his backyard garden in the Mopani District (Photo: SANBI); Heat and drought tolerant climate-resilient livestock that were introduced in the Lelofontein and Kamiesberg communities, Namakwa District (Photo: SANBI); An established climate-smart communal garden in the Mamanysha Village has introduced drip irrigation techniques to irrigate agricultural produce, Mopani District (Photo: SANBI).
Case Study Series

01
A New Approach to Enabling Local Responses to Climate Change: Learning from the Community Adaptation Small Grants Facility project

02
Adaptive Management: Enhancing Direct Access to climate finance

03
An Emerging Framework for Capacity Building: Reflection and response as part of Community-Based Climate Change Adaptation

04
Good Governance: Oversight and compliance support mechanisms within the context of Enhanced Direct Access and Climate Change Adaptation

05
Participatory Project Development for Small Grants: Lessons from the Small Grants Facility project funded by the Adaptation Fund

06
A Tale of Two Districts: Regional influences on the implementation of Community-Based Climate Change Adaptation

07
Facilitating Agency Experiences: The important role of Facilitating Agencies in the implementation of the Small Grants Facility project in two Districts in South Africa

08
Community-Based Climate Change Adaptation: What does success look like?

09
Cascading Compliance: Lessons on achieving compliance within the Adaptation Fund’s Environmental and Social Policy requirements
The Community Adaptation Small Grants Facility (CA SGF) project was implemented in two Districts within South Africa. Although they have similar climate change projections, local Vulnerability Assessments revealed nuances in community priority responses to such impacts. This information informed the design and implementation of the CA SGF project and highlighted important factors to consider when localising climate adaptation interventions.

- The diversity of project types reflects the socio-economic differences of the regions in which the Community-Based Climate Change Adaptation projects were implemented.
- Climate change adaptation strategies must directly and integrally link with both climate science and local priorities. There are various Community-Based Climate Change Adaptation interventions. The individuals or groups most affected, and specifically those who participated in effecting adaptation, must be front and centre of decision-making to ensure that local context and priorities drive adaptation actions.

- The most effective strategies addressed climate change broadly, effectively ensuring that the collective interventions focused on building community resilience. Integrated interventions that leverage co-benefits and have positive knock-on impacts can yield the most significant results.
- Community-Based Climate Change Adaptation required strong elements of capacity building through targeted, customised and on-going training and mentorship. The most effective strategies incorporated the establishment of systems, committees or formalised processes to monitor, manage and maintain project activities.

Key Messages

The Community Adaptation Small Grants Facility (CA SGF) project was implemented in two Districts within South Africa. Although they have similar climate change projections, local Vulnerability Assessments revealed nuances in community priority responses to such impacts. This information informed the design and implementation of the CA SGF project and highlighted important factors to consider when localising climate adaptation interventions.
Project Overview

The “Taking Adaptation to the Ground: A Small Grants Facility for enabling local level responses to climate change” project (known as the Community Adaptation Small Grants Facility project) was funded by the Adaptation Fund in 2014. The project sought to pilot a new mechanism of Enhanced Direct Access for local level climate change adaptation in South Africa, with a broad goal of understanding how such a mechanism could be scaled and replicated in the future.

The objective of the project was to increase resilience and reduce the vulnerability of local communities who are most vulnerable to climate change through building capacity and empowering these communities to identify and implement adaptation measures. It aimed to facilitate the inclusion of climate change adaptation responses into local practices so that assets and livelihoods would be protected from local climate-induced risks associated with expected dry spells and droughts, seasonal shifts and storm-related disaster events. The emphasis was to support projects that harnessed local knowledge and creativity, integrated climate science, addressed gender disparities and ultimately generated tangible adaptation responses.

The Community Adaptation Small Grants Facility project targeted vulnerable, rural communities in the Namakwa District in the Northern Cape and the Mopani District in Limpopo, South Africa. The project offered grant sizes of approximately US$100 000 to communities for the implementation of tangible climate change adaptation responses that were identified locally. The project was approved as a four-year pilot project but was extended to over five years to accommodate unforeseen delays.

Translating Global Expectations Into Local Adaptation Results

This Case Study examines the local Vulnerability Assessments in each of the two South African Districts and the Community-Based Climate Change Adaptation interventions implemented as part of the CA SGF project. It provides an overview of the Vulnerability Assessment in each area, followed by the types of climate change adaptation interventions implemented, and highlights the linkages between climate science projections and local responses.

Context and background

Climate change projections for South Africa include increased frequency and intensity of weather events in the form of storms, floods, droughts and fires. The country’s high rates of poverty and unemployment, as well as the vast discrepancy between rural and urban areas regarding access to economic opportunities and vital services (including municipal and financial services), make a large proportion of the almost 60 million population highly vulnerable.

Although a national Climate Change Response Strategy was completed in 2004, there was little in place to implement adaptation strategies at the grassroots level, where the effects of climate change would be most severe and impacts would be most consequential. The CA SGF project sought to develop an Enhanced Direct Access finance mechanism to fund rural communities’ ability to develop and implement climate adaptation responses within two targeted areas, namely the Mopani District in Limpopo and the Namakwa District in the Northern Cape.
Climate change Vulnerability Assessment

According to the Fiscal and Financial Commission’s submission for the 2013-14 Division of Revenue, two of the Mopani District’s municipalities are among the country’s top twenty most vulnerable to climate change. Located within Limpopo Province, the Mopani District economy is mainly dependent upon agriculture and just under one-third of the economy is driven by the mining sector. Approximately 77% of the population live below the poverty line, according to the 2006 statistics submitted in the report. The Mopani District is characterised by low rainfall, resulting in limited water resources and recurring droughts. This has created competition between agriculture, mining, forestry and households for access to natural resources. Climate change is projected to change rainfall patterns, exacerbating the poor health of the primary water resource in the area, the Letaba river system. The strained riparian ecosystem is expected to lead to increased erosion and land degradation as well as a loss of biodiversity and increased dependence on fewer species of plants and animals for the natural resources required to survive.

A local Vulnerability Assessment was conducted as part of the planning and design of the CA SGF project, using participatory analysis to assess local climate impacts on both livelihoods and economic sectors. The purpose was to understand the realities of local communities within the context of climate science and how these experiences impact needs and priorities. The following community priorities were identified during this process:

- Insufficient access to clean water due to increased average and extreme temperatures and therefore greater evaporation, and water infrastructure damage as a result of intensifying rainfall events.
- Loss of livestock and crop productivity and quality, resulting in reduced food security due to heat stress, water insecurity, and soil erosion.
- Disease and extreme heat increase vulnerability to additional health problems.
- Lack of cooling storage during extreme and higher average temperatures resulting in economic losses for small businesses and traders.
- Damage to infrastructure from high-intensity rainfall events, prohibiting access to critical economic hubs and service delivery.
Climate change adaptation strategies

The CA SGF project awarded grants to implement various Community-Based Climate Change Adaptation projects in the Mopani District. All projects were driven by the priorities established by the community, which are also closely tied to the local Vulnerability Assessment, with a significant focus on the first three listed above, especially water and food security. However, each project was distinctively designed by a particular community and demonstrates how communities’ priorities resulted in different interventions. The sections below highlight the adaptation interventions, providing examples of how these aimed to address the locally relevant climate change challenges.

Increased access to water

Five projects in the Mopani District involved multiple strategies to capture and utilise water with improved efficiency. Projects explored and dug boreholes, refurbished earth dams, constructed water reservoirs and installed various water collection tanks. In total, projects in this region installed ten water storage tanks for small-scale climate-smart farming. An additional 115 rainwater harvesting tanks were installed for domestic use. A total of 3.97 hectares demonstrated improved water management using climate-smart agriculture practices that conserve water. Two earth dams were refurbished and two reservoirs were constructed. Increased access to water was used to improve household access to potable water as well as feed irrigation systems established for community gardens.

Example: Increasing access to water through household rainwater harvesting

Subsistence farming was threatened by increasing temperatures and extreme weather events, which eroded vital topsoil and damaged dams, making the Ga-Ntata community food insecure. The area experienced heavy storms and floods every couple of years that destroyed or damaged bridges and local infrastructure, prohibiting access to vital resources and services. Furthermore, the community lacked access to weather data and the skills needed to manage the limited rainwater received adequately. Household Rainwater Harvesting systems encouraged members to create backyard gardens.

The ‘Ga-Ntata Rainwater Harvesting System and Rain Gauge’ project aimed to increase climate resilience among community members by improving access to water for households and livestock. The project installed rainwater-harvesting systems in 112 homes and three institutions, refurbished two earth dams, installed five rain gauges and rehabilitated two gullies for soil conservation and channelling water. A water committee was established to monitor, manage and maintain the installations after project closure. A systems approach to water management, including the installation of rain gauges to promote effective decision-making for water use, improved access to this important resource for households and the community as a whole. The development of a water committee promoted local capacity and formalised a system for ongoing resource management.

Improving storage to reduce economic losses

Three storage and processing shelters were developed for vegetable production in the Mopani District. The shelters provided a space to prepare and pack food and offered protection from the sun and other elements. Two projects utilised innovative technology by developing a charcoal room to maintain considerably cooler indoor temperatures by leveraging the natural process of evaporation. One project also included a solar food dryer, to limit waste and preserve food to either consume at a later stage or sell when out of season. Water from earth dams could be used for multiple services, such as brick-making and irrigation.
Example: Strengthening livelihood resilience through technology

With the bulk of the District reliant upon agriculture, the ability to grow, store and process produce was key to the Vuhehli Village. Threatened by increased temperatures and decreased, less predictable rain patterns, the lack of safe storage during extreme weather events threatened economic losses from one of the few sources of income available: selling produce. The ‘Vuhehli Climate-Smart Agriculture Vegetable and Nursery’ project aimed to develop solutions to these climate change impacts and mitigate these risks. The project installed a nursery, a biogas digester, six water storage tanks, an underground reservoir and constructed a solar dryer and a charcoal cooler, which used a method of refrigeration that does not require electricity. The temperatures in the area are very high; therefore, food gets spoiled quickly. The charcoal cooler helps with keeping the harvest fresh for longer, and the solar dryer preserves excess vegetables. This simple technology minimises food waste. The production of bio-slurry from the biogas digester fertilised the garden, and the Vuhehli Drop-In Centre used the methane gas for cooking. The range of activities implemented during the project resulted in a productive food garden, improved access to nutritious foods, and provided the opportunity to sell excess produce for income generation. The surrounding community benefitted by having access to fresh, naturally grown vegetables.

Improved Health

Ablution facilities were installed at sites that involved communal gardens and vegetable packing, as is recommended best practice for community gardens by the Department of Agriculture. The ablution facilities were an addition to the project activities as a health and safety measure as there were no toilet facilities nearby. The provision of the facilities ensured that communal access to vegetables and storage sites did not become a source for spreading disease.

The establishment of all adaptation assets included considerable capacity building in areas of climate-smart agriculture to improve environmental integrity and ecosystem functioning. Theoretical and practical training was provided for beneficiaries throughout the project on topics such as agroecology, agroforestry, organic farming, water management and soil health conservation. Ongoing management, particularly after the CA SGF project ended, required additional capacity building and the development of a shared understanding and commitment of the financial and human resources involved in managing and maintaining assets. The table below provides the number of assets acquired for each of the Mopani District’s projects.

Table 1: Mopani District climate adaptation assets achieved through the CA SGF project.
Namakwa District

Climate change Vulnerability Assessment

One of the largest and least densely populated areas in South Africa, the Namakwa District is characterised by widely dispersed settlements congregated around accessible water. Nearly half of all households are involved in agriculture, primarily livestock farming due to the semi-arid conditions. Indigenous hardy crops, such as rooibos tea, are also farmed as a cash crop. Unemployment rates are high, and two-thirds of the population experienced poverty at the time the CA SGF project commenced.

The Namakwa District currently experiences hot, arid summers and cool, wet winters. Hotter, drier conditions are projected in the region by climate science data. Increased frequency and intensity of extreme storm events and drought undermine a historically predictable climate pattern upon which those in the area depend. Increasing temperature, and the associated increase in the number of hot days, is projected to intensify evaporation rates and further reduce water availability, which will be exacerbated by unpredictable rainfall and shifting seasonal weather patterns.

Following a 2012 assessment to identify priorities for Ecosystem-based Adaptation and develop a vulnerability index for the district, a participatory engagement process was conducted to inform the CA SGF project design and planning. The process included stakeholders from community groups, non-government organisations and government, amongst others, and discussed the practical impacts of climate change in the area and its effects on community members’ lives and livelihoods. The process concluded with the following priorities for the Namakwa District:

- Drought, heat stress and reduced access to water jeopardise the viability of agricultural and fishing livelihoods.
- Flash floods following drought and storm surge threaten infrastructure and human settlements.
- Increased community resilience reduces reliance on Disaster Risk Reduction that strains municipal services and systems.
- Degradation of ecological infrastructure, due to increasing aridity and overutilisation of resources, threatens livestock grazing and water access.

Climate change adaptation strategies

The Community-Based Climate Change Adaptation projects in the Namakwa District varied considerably, mirroring the geographic diversity of the region. Fisher or farmer livelihoods were a focus for five of the seven regional projects, aligning with the local priority to strengthen resilience. The strategies varied and had a focus on climate adaptation measures to shelter herders and livestock from extreme conditions, enhance the resilience of livestock and crop breeds, improve access and management of water resources, and promote monetary savings to strengthen the response to climate shocks.

Reducing heat stress among herders and livestock

Two projects in the district sought to improve livelihoods by building shelters for herders and livestock to provide protection from extreme heat and weather conditions and enable improved land management. Climate change impacts both livestock and livestock herders, as it can result in poor living conditions and health for herders, and increased mortality, morbidity and loss of reproduction in livestock. Herders are adversely affected by extreme temperatures and climatic events, particularly in situations where they have inadequate shelter available as well as limited access to water and dependency on permanent water sources.
Improving livestock breed and crop resiliency

Agriculture is a primary source of livelihood for many in the Namakwa District. Climate adaptation strategies involved increasing resilience of commodities upon which communities depend. However, research is not always available to guide interventions, particularly regarding endemic species. Projects used the best available scientific data, and, when necessary, conducted their own research to identify new best practices.

Example: Improving livestock resiliency

Livestock farming communities in the dryland area of Leliefontein were incredibly vulnerable to climate change. Livestock farming is one of the few available livelihood options. Farmers reported impacts of climate change and variability on their activities and were finding it increasingly difficult to farm with the current livestock breeds and on their degraded communal lands. For example, in 2015, a prolonged drought weakened the livestock, and 80% of lambs and 10% of productive ewes died in a relatively mild cold period, leaving the farming community highly vulnerable.

The ‘Biodiversity and Red Meat Cooperative – Land and Livestock Adaptation’ project, sought to address climate-related vulnerabilities by replacing commercial livestock breeds with harder species. These breeds were semi-indigenous or indigenous and more resilient to heat, disease-resistant, grazed less selectively and still fetched premium prices. Increased farmer resilience was addressed by implementing planned and scientifically sound grazing management regimes that maintained fodder and water availability for livestock, and prevented further degradation of natural resources. The project helped increase the assets (climate-resilient livestock) and income (sale of lambs and/or temporary work) of 92 farmers, strengthening their livelihoods and financial resilience.

Example: Herder shelters as a climate adaptation strategy

Herding is central to the economic and cultural lives of communities in the Namakwa District (Namaqualand). Herders, and their livestock, are highly vulnerable to the impacts of climate change through drought, extreme heat and cold as well as strong winds and floods. Climate impacts are degrading the ecosystem upon which livestock must feed and survive; less fodder and water increase livestock death and illness, reducing productivity and income for many who rely solely on herding as their livelihood. Herders in Kharkams and Steinkopf lacked adequate shelters to withstand the harsh climate, which compromised their health and curtailed their ability to stay with and care for the herds and manage the grazing behaviour or address illness.

Focusing on the construction of climate-resilient mobile shelters for herders, the ‘Climate proofing herder shelter to facilitate climate change adaptation’ project, supported safer and more productive practices. Providing protection from the elements improved the health of both the herder and their livestock. Mobile shelters improved land management by increasing the geographical spread of grazing and reducing pressure on permanent water sources. Rainwater systems attached to the shelters help with harvesting the minimal winter rainfall in the area and improved water security for herders during the dry seasons and drought periods. Furthermore, implementing grazing management systems can support the rehabilitation of ecosystem services and improve the quality of forage available to livestock.
Example: Improving crop resiliency

Small-scale rooibos tea producers in the Suid Bokkeveld rely on rooibos tea production for income and are highly vulnerable to climate variability and change. High temperatures and wind speeds lead to reduced survival of rooibos seedlings, and unseasonably severe rainfall events in the past have increased soil erosion and the loss of topsoil in rooibos lands resulting in the loss of production. By developing and testing innovative climate-smart approaches to rooibos tea production, the ‘Climate Proofing Small-Scale Rooibos Production’ project sought to enhance farmer knowledge of climate impacts and build the resilience of tea lands.

Based on conclusions from demonstration projects, other local research, and farmer knowledge, rooibos farmers experimented with the technique of applying a thin layer of mulch on established rooibos lands. They also investigated the value of ploughing in compost, manure and organic matter on fallow lands in preparation for planting. These applications aimed to increase water infiltration, moderate soil temperatures and stimulate productive bacterial activity, as well as reduce wind and water erosion, which leads to the loss of valuable topsoil.

The experiments provided hands-on experience to inform the wider-scale adoption of these techniques. It also provided valuable insight into the possible negative impacts of mulching where rainfall is minimal – resulting in evaporation from the mulch with little or no penetration to the soil. Mulching, without gentle turning of the mulch into the soil, presented an unanticipated risk when adopting the process. This finding is significant as mulching is a widely applied adaptation strategy.

Improving Safety Systems (reducing the municipal need for disaster risk reduction services)

In the coastal area of the Namakwa District, one project sought to enhance the safety of fishers. Climate change results in less predictable weather, extreme weather events and increased storms, and changes in wind and sea interactions which impacts species abundance and migration patterns, negatively affecting the livelihoods of small-scale fisher communities. The results of this are fewer fishing days, shorter fishing times, and challenges planning fishing outings due to more dangerous and less predictable weather. Less time at sea results in income losses for fishers, as well as those involved in the pre-harvest and post-harvest work, which increases the vulnerability of these communities.

Example: Building resilience of small-scale fishers

Small-scale fisheries along the West Coast of South Africa encompass a variety of activities along the value chain and include artisanal fisheries, which are important for food security, poverty eradication, equitable development and sustainable resource utilisation. Climate change has resulted in unpredictable and rapidly changing weather patterns. This is a significant source of concern for fisher communities in Port Nolloth and Hondeklipbaai as it results in increased accidents out at sea and a reduction in the annual number of sea days. Fishers have reported a high number of fatalities at sea since 2000.

The ‘Building Resilience for Northern Cape Small-Scale Fisher Communities and Cooperatives’ project implemented a Safety at Sea system and strengthened cooperation among small-scale fishers in two areas of the Namakwa District. The Safety at Sea systems required facilitating refresher training in early warning and emergency response in both Northern Cape communities. Multiple, targeted engagements were undertaken with various stakeholders, including government.
Table 2: Namakwa District climate adaptation assets achieved through the CA SGF project.

<table>
<thead>
<tr>
<th>New improved shelters</th>
<th>Safety Systems</th>
<th>Backyard Garden</th>
<th>Crop or livestock Resilience</th>
<th>Water Management</th>
<th>Land Management</th>
<th>Financial Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concordia Farmers Adaptation Project</td>
<td>12 Livestock shelters</td>
<td></td>
<td></td>
<td>24 rain water harvesting tanks; 5 water storage tanks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Capacity for Climate Resilient Livelihoods in Northern Cape Fisher Communities</td>
<td></td>
<td>1 Safety at Sea System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two Communities Adapting Together</td>
<td>15 insulated houses</td>
<td>8 Backyard gardens</td>
<td>37 tanks for domestic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodiversity and Red Meat Cooperative - Land and Livestock Adaptation</td>
<td></td>
<td></td>
<td>89 resilient livestock</td>
<td>5 refurbished dams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Proofing Small-scale Rooibos Production</td>
<td></td>
<td>23.3 hectares climate smart farming</td>
<td></td>
<td>10 water storage tanks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Proofing Herder Shelter to Facilitate Climate Change Adaptation</td>
<td>13 mobile herder shelters</td>
<td></td>
<td></td>
<td>13 tanks for farming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Resilience to Climate Change by Promoting Savings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 savings groups</td>
<td></td>
</tr>
</tbody>
</table>

Regional Lessons in Climate Adaptation

Effective Community-Based Climate Change Adaptation requires a combination of climate science and local priorities

While climate science must provide the base for local adaptation responses, the interventions must be grounded in the priorities of the communities involved. Vulnerability Assessments that project and model climatic changes and weather patterns provide a basis to understand and frame the potential short-, medium- and long-term impacts of climate change. Analyses of these projections on economic sectors or other sociological frameworks can assist in providing information on how the projected changes may impact geographic areas or economic sectors. The CA SGF project demonstrated that various adaptation interventions could be applied to solve any projected impact, but local priorities and needs must drive successful interventions. Community-Based Climate Change Adaptation projects, with particular reference to Enhanced Direct Access to climate finance, should be developed in ways that incorporate local priorities and offer responsive systems to ensure community interests continually drive interventions.

Capacity building and sustainability

Capacity building occurred throughout the CA SGF project and at every level, regardless of region or adaptation intervention. The capacity building activities incorporated a variety of requisite skills, including financial, administrative and project management, as well as technical skills and knowledge. Each climate change adaptation intervention
had training, mentorship and technical assistance needs, which needed to be met by the Project Management Team, particularly the Facilitating Agencies.

Adopting climate-smart strategies required changes in long-established individual and community behaviour, requiring multiple training sessions and on-going mentorship to embed knowledge. Training needed to be conducted in local languages, and often required practical or experiential learning. Acknowledgement of local and indigenous knowledge, which often complements or supplements existing methods, presented challenges and opportunities. Effectively building capacity required a responsive and flexible approach to time and resource allocation to meet local needs and embed new practices.

Through the process, it was discovered that being responsive to the diverse needs of local climate adaptation interventions requires a shared and comprehensive understanding of capacity requirements within the framework of the technical implementation requirements as well as the international donor obligations. Furthermore, capacity needs to be understood as a ‘quality’ that is built over time, rather than a ‘quantity’ that can be established prior to starting work.

Infrastructure damage

Although both local Vulnerability Assessments identified damage to infrastructure as a priority concern, none of the CA SGF projects involved the construction of large-scale infrastructure. Projects that required a Basic Assessment or full Environmental Impact Assessment, as per national regulations, were disqualified due to the administrative costs and the potential for delays. This exclusion eliminated large infrastructure interventions.

However, it is worth noting that projects in both regions developed strategies that circumvented potential infrastructure failures. The Mopani District implemented interventions that integrated activities to develop local systems and reduce reliance on suppliers outside of the community. In addition, income-generating activities, such as selling poultry or vegetables, also created local access to goods which increased community resilience. For example, one of the projects established a poultry house that generated income through selling chickens and was also a producer of manure that could be used for compost to improve soil fertility. In the Namakwa District, the act of protecting livestock and herders through the creation of shelters and promoting resilience through grazing management plans and more resilient breeds supported the local infrastructure without requiring large scale developments.
Integrated interventions can have knock-on and multiplier effects

The most effective community projects identified and leveraged climate co-benefits. Occurring at various levels and using a variety of approaches, a holistic view of climate impacts and the design of interventions to address a broader range of issues, had positive knock-on effects. The ‘Ga-Ntata Rainwater Harvesting System and Rain Gauge’ project devised multiple interventions that specifically addressed water resource management to enhance household and local access. It also reduced alien invasive species and strengthened the local ecosystem as a whole. In the same region, the ‘Vuhehli Climate-Smart Agriculture Vegetable & Nursery’ project adopted different strategies to establish a closed system of food production to reduce dependence on external sources for fertiliser and enabled conditions for improved produce management.

Promote systemic impacts

One of the challenges in achieving locally-driven interventions that are relevant and sustainable is to ensure regional adaptation is also strengthened. Therefore, alongside community efforts, there was the responsibility and opportunity to identify and connect linkages to strengthen regional resilience. Without intentional facilitation, systemic impacts would be limited and the region’s ability to adapt would not be altered.

A way in which the CA SGF project sought to build regional capacity was through the facilitation of various learning platforms. The Project Management Team was responsible for coordinating inter- and intra-District learning opportunities, which occurred throughout the project lifecycle. The Facilitating Agency coordinated peer learning within and between Small Grant Recipient projects. In addition, the integration of other stakeholders, such as local government or non-government actors, aimed to enhance the reach of learning.

Conclusion

The two Districts where the CA SGF project was implemented in South Africa are both projected to experience increased temperatures, more frequent extreme weather and less predictable precipitation. However, local Vulnerability Assessments revealed nuances in climate impacts and, particularly, community priority responses to these. Adaptation responses must be grounded in climate science and be driven by locally-determined priorities. The climate change adaptation strategies adopted by the Small Grant Recipients mirrored those priorities while providing on the ground examples of practical interventions and innovations to strengthen community resilience.
Authors
Tamara Merrill, SouthSouthNorth
Sue Soal, Social Process Consultant
Sarshen Scorgie, Conservation South Africa
Halcyone Muller, Conservation South Africa
Nicola Stuart-Thompson, CHoiCe Trust
Farai Hove, CHoiCe Trust

Contributors (In alphabetical order)
Mandy Barnett, South African National Biodiversity Institute
Lorraine Dimairho, SouthSouthNorth
Corle Jansen, Conservation South Africa
Julia Levin, Conservation South Africa
Makganthe Maleka, South African National Biodiversity Institute
Nikki Stuart-Thompson, CHoiCe Trust
Mpfunzeni Tshindane, South African National Biodiversity Institute
Louise Vaughan, SouthSouthNorth
Carl Wesselink, SouthSouthNorth

Acknowledgements
The CA SGF project would like to thank Mikateko Sithole and Lindelani Mudau from the Department of Forestry, Fisheries and the Environment, as well as Ntshavheni Mudau from the Mopani District Municipality and Denver Smith from Namakwa District Municipality for their guidance and support on the development and review of the case studies. In addition, appreciation is extended to the Adaptation Network as well as the various individuals and institutions who offered their support and expertise as members of a regional Technical Advisory Group. Gus Brown, who represented the Namakwa District Municipality, is recognised in memoriam.

Particular gratitude is extended to the Small Grant Recipients and the community beneficiaries who contributed an extraordinary amount of time, energy, and commitment alongside their hopes and belief in a better and more resilient future and without whom these stories could not be told.

This case study was compiled by SouthSouthNorth as a deliverable of the CA SGF project with input from partners and stakeholders.

This work was funded from an Adaptation Fund grant. The views expressed herein do not necessarily represent those of the Adaptation Fund or the entities managing the delivery of the Community Adaptation Small Grants Facility (CA SGF) project. The authors do not claim to represent the parties involved in the CA SGF project and do not warrant the accuracy or completeness of information presented. As a result, the views presented do not necessarily reflect those of all contributors and stakeholders. Credits for the contribution of content, design and pictures were obtained through a diligent process and any exclusions are fully accidental. The information should not be copied or re-used/re-produced in any way without acknowledgement of the source document. Information herein may only be shared on a non-commercial basis and provided the CA SGF project is duly acknowledged.
The Community Adaptation Small Grants Facility project was funded by the Adaptation Fund, endorsed by the Department of Forestry, Fisheries and the Environment as the National Designated Authority, implemented by the South African National Biodiversity Institute as the National Implementing Entity, and executed by SouthSouthNorth as the Executing Entity. The project was locally supported by the Namakwa and Mopani District Municipalities and locally facilitated in the Districts by Conservation South Africa as the Namakwa Facilitating Agency and CHoiCe Trust as the Mopani Facilitating Agency. Civil society was represented in the project’s governance structures by the Adaptation Network.